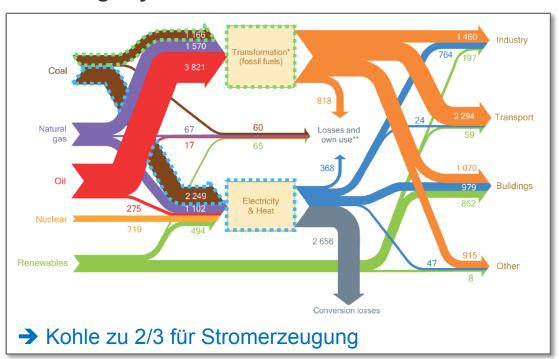


Die Kohlen aus dem Feuer holen

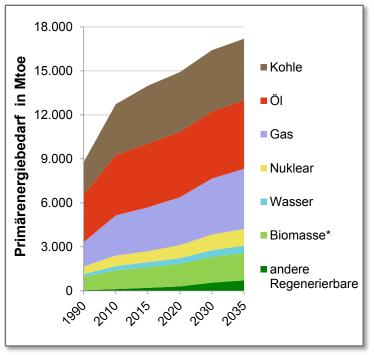
Der Energierohstoff Braunkohle, vom Energieträger zum Kohlenstoffträger

Impulse für die Innovationsregion Rheinisches Revier - Gute Ideen, Rohstoffe intelligenter zu nutzen

Vortrag: Prof. Dr.-Ing. Bernd Meyer 20. September 2014, Schloss Bedburg in Bedburg


- I. Energierohstoff-Prognose
- II. Kohlenstoffträger vs. Energieträger
- III. Perspektive für die Braunkohle

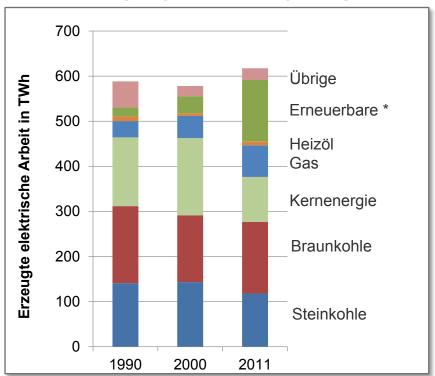
Weltenergiesystem und Prognose bis 2035


Weltenergiesystem 2010 in Mio. toe

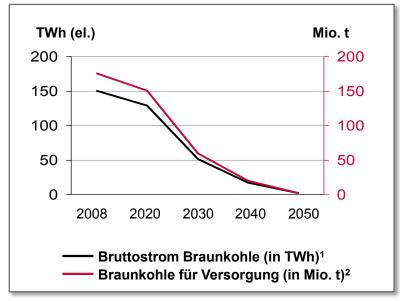
Erwartungen 2035:

- Stagnation Erdölförderung
- Erdgas vor Kohle Energieträger Nr. 2

Weltweiter Primärenergieverbrauch bis 2035


^{*} Beinhaltet traditionelle und moderne Biomassenutzung

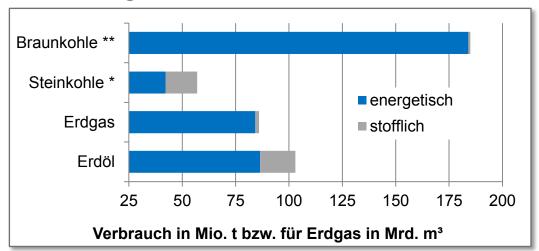
Stromerzeugung in Deutschland


Stromerzeugung nach Energieträger

Quelle: AG Energiebilanzen, Stand: 14.02.2013 *) inkl. Windkraft, Wasserkraft, Biomasse, Photovoltaik und Hausmüll

Freiwerdende Braunkohle steht für **stoffliche** Nutzung zur Verfügung

Energiekonzept der Bundesregierung


- 1: Durchschnittswerte der acht Zielszenarien im Energiekonzept der Bundesregierung 2010 (bei konstantem Wirkungsgrad).
- 2: Hochrechnung auf Basis der Fördermenge von 2008 (175,3 Mio. t) und der Durchschnittswerte der Zielszenarien im Energiekonzept.

Struktur der Energierohstoff-Nutzung in Deutschland 2012

Primärenergieverbrauch 2012

- *) Steinkohleeinsatz in Stahlindustrie
- **) für Montanwachs und Aktivkoks Quellen: BGR 2012, MWV 2012, BWK 04/2013 u.a.

Bi-funktionelle Nutzung der Energierohstoffe

Energieträger

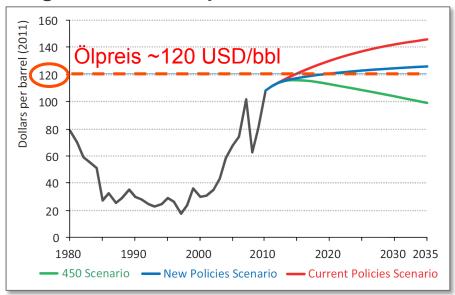
Kohlenstoffträger

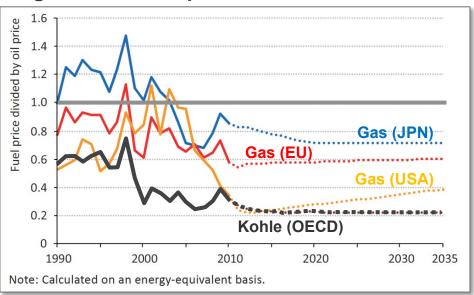
- Ca. 89 % für Strom, Wärme und Kraftstoffe
- Generell substituierbar!

- Ca. 11 % für stoffliche Nutzung (64 % Grundchemikalien, 36 % Metallurgie)
- Nur partiell substituierbar!

CO₂-Emission Braunkohle

410 kg/MWh(th,H_u)


200 kg/MWh(th,H_u)

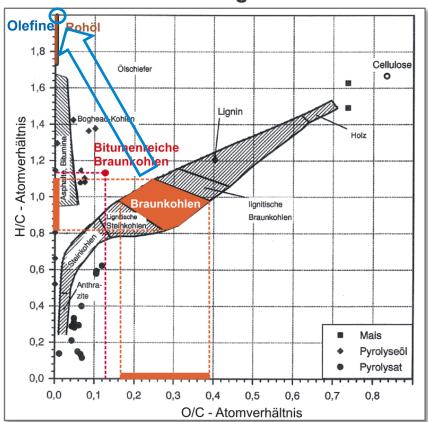

Preisentwicklung für Erdöl, Erdgas und Kohle

Prognose des Erdölpreises

Erdgas- und Kohlepreis im Verhältnis zu Öl

Quelle: IEA World Energy Outlook 2012

Erwartungen 2035:


- → CO₂-Steuer 45 USD/t
- → Kohle steht regional im Wettbewerb mit Erdöl

Braunkohle im Vergleich zu Erdöl

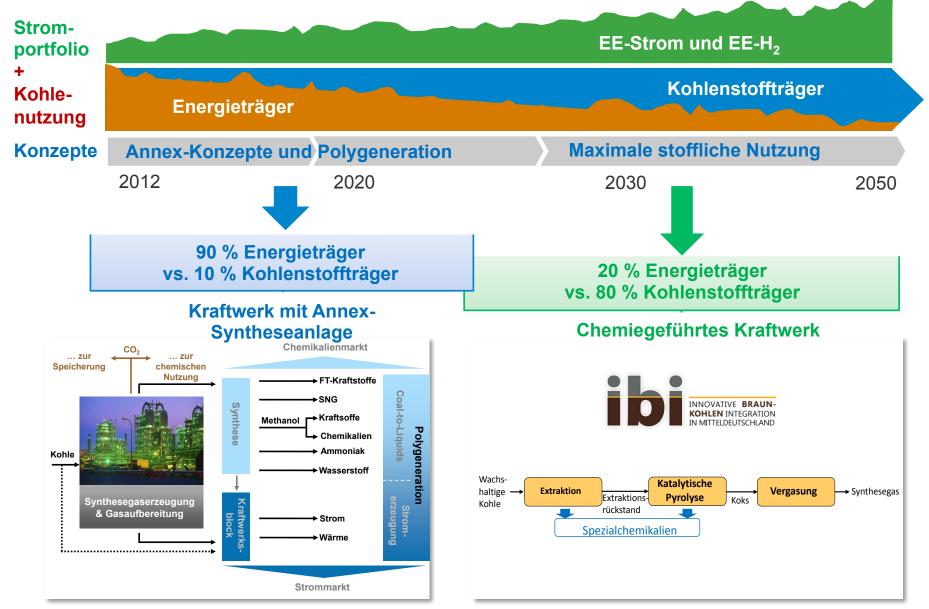
Mars-van-Krevelen-Diagramm

Stoffliche Charakterisierung

	H/C	O/C
Braunkohle	1–1,1	0,16
Prozess → Produkt		
Extraktion → Montanwachs	1,5	<0,1
Pyrolyse → Schwelteer	1,4	<0,1
Katalytische Spaltung → BTX → Phenole	1–1,25 1	0,0 0,16
Vergasung + Synthese → Methanol → DME → Olefine → H ₂	4 3 2 ∞	1 0,5 0 -

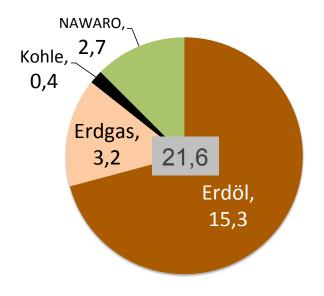
Wandlungsschritte der Kohle zu Syntheseprodukte (ohne Stöchiometrie):

CO₂-Minderung durch Braunkohlenutzung als Kohlenstoffträger


	Einsatzstoffe	Produkte	
Heute – 10	0 % CO ₂		
Kohle	+ Sauerstoff	↔ 100 % CO₂ + Wasser Wärme/	
$C_1H_{0,80}O_{0,0}$	₀₆ + 1,1725 O ₂	\leftrightarrow 1,0 CO ₂ + 0,405 H ₂ O Strom	
Morgen – 60 % CO ₂			
Kohle	+ Sauerstoff + Dampf (Shift)	⇔ 60 % CO₂ + Syngas Methanol*, Kraftstoffe*	
$C_1H_{0,80}O_{0,0}$	$_{06}$ + 0,56875 O_2 + 0,4 H_2O	\leftrightarrow 0,6 CO ₂ + 0,4 CO + 0,8 H ₂	

^{*} Diese Synthesen weichen von der hier dargestellten ausschließlich stöchiometrischen Betrachtungsweise in unterschiedlichem Maßstab ab. Nicht erfasst sind prozessbedingte CO₂-Produktionen, spezifische Produktausbeuten und der Einfluss von Katalysatoren.

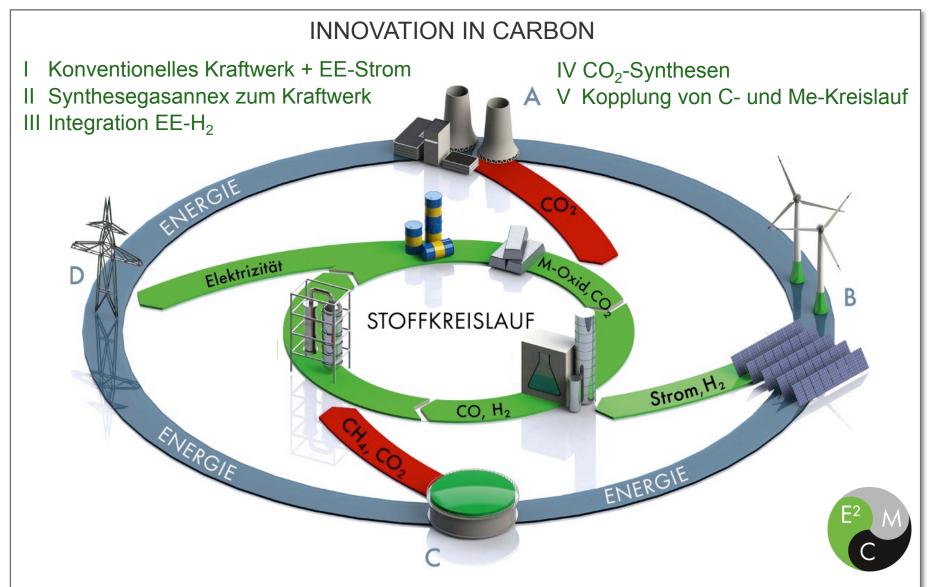
Perspektive der Braunkohlenutzung


Syntheseprodukte aus Braunkohle

aus 10 Mio. t Rohbraunkohle:

- Synth. Erdgas: 2,0 Mrd. m³/a
 → ca. 2,0 % der dt. Nachfrage
- Benzin: 0,95 Mio. t/a
 → ca. 3,5 % der dt. Nachfrage
- Olefine: 0,95 Mio. t/a
 → ca. 11 % der dt. Nachfrage

Rohstoffmix der organischen Chemie, Deutschland 2011 Angaben in Mio. t



VCI (2014): Rohstoffbasis der chemischen Industrie

Die Vision: Vom Kohlenstoff- zum Metallkreislauf

Braunkohle – ein unverzichtbarer Energie- und Kohlenstoffträger

Vielen Dank für Ihre Aufmerksamkeit! Glück Auf!

Kontakt:

Prof. Dr.-Ing. Bernd Meyer

TU Bergakademie Freiberg
Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Fuchsmühlenweg 9 (Reiche Zeche)
D-09599 Freiberg

Telefon: 03731 39-4510 · Fax: 03731 39-4555

E-Mail: evt@iec.tu-freiberg.de

www.iec.tu-freiberg.de